Functional Complementation and Genetic Deletion Studies of KirBac Channels
نویسندگان
چکیده
The superfamily of prokaryotic inwardly rectifying (KirBac) potassium channels is homologous to mammalian Kir channels. However, relatively little is known about their regulation or about their physiological role in vivo. In this study, we have used random mutagenesis and genetic complementation in K(+)-auxotrophic Escherichia coli and Saccharomyces cerevisiae to identify activatory mutations in a range of different KirBac channels. We also show that the KirBac6.1 gene (slr5078) is necessary for normal growth of the cyanobacterium Synechocystis PCC6803. Functional analysis and molecular dynamics simulations of selected activatory mutations identified regions within the slide helix, transmembrane helices, and C terminus that function as important regulators of KirBac channel activity, as well as a region close to the selectivity filter of KirBac3.1 that may have an effect on gating. In particular, the mutations identified in TM2 favor a model of KirBac channel gating in which opening of the pore at the helix-bundle crossing plays a far more important role than has recently been proposed.
منابع مشابه
CALL FOR PAPERS Comparative Genomics Cloning and functional characterization of a superfamily of microbial inwardly rectifying potassium channels
Sun, Si, Jo Han Gan, Jennifer J. Paynter, and Stephen J. Tucker. Cloning and functional characterization of a superfamily of microbial inwardly rectifying potassium channels. Physiol Genomics 26: 1–7, 2006. First published April 4, 2006; doi:10.1152/physiolgenomics.00026.2006.—Our understanding of the mammalian inwardly rectifying family of K channels (Kir family) has recently been advanced by ...
متن کاملCloning and Functional Characterisation of a Superfamily of Microbial Inwardly-Rectifying (Kir) Potassium Channels
Our understanding of the mammalian inwardly-rectifying (Kir) family of potassium channels has recently been advanced by X-ray crystal structures of two homologous prokaryotic orthologs (KirBac1.1 and KirBac3.1). However, the functional properties of these KirBac channels are still poorly understood. To address this problem we have cloned and characterised genes encoding KirBac orthologs from a ...
متن کاملCloning and functional characterization of a superfamily of microbial inwardly rectifying potassium channels.
Our understanding of the mammalian inwardly rectifying family of K+ channels (Kir family) has recently been advanced by X-ray crystal structures of two homologous prokaryotic orthologs (KirBac1.1 and KirBac3.1). However, the functional properties of these KirBac channels are still poorly understood. To address this problem, we cloned and characterized genes encoding KirBac orthologs from a wide...
متن کاملInvestigation of the Relationship between Genetic Polymorphisms in GSTM1 and GSTT1 Genes and Susceptibility to Lung Functional Abnormalities in Workers Exposed to Air Pollutants at Isfahan Steel Plant
Introduction: Gaseous air pollutants can cause oxidative stress, which can lead to lung damage by inducing inflammation. Polymorphisms in the glutathione S-transferase (GST) gene are involved in the pathogenesis of many diseases, including lung disease. Two glutathione S-transferase Mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) genes belong to this family, in which deletions occur ...
متن کاملIsolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...
متن کامل